Properties

Label 1728.46940.2.a1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_6\times A_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 17 & 4 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 18 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 18 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 27 \\ 27 & 10 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 25 & 12 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_3^2:\GL(2,\mathbb{Z}/4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.D_6^2.C_2^4$
$\operatorname{Aut}(H)$ $S_4^2\times \AGL(2,3)$
$\operatorname{res}(\operatorname{Aut}(G))$$D_{12}.(D_6\times S_4)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$A_4:S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_3^2:\GL(2,\mathbb{Z}/4)$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_3^2:\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$A_4\times C_6^2$$C_6:S_3\times A_4$$C_6:S_3\times A_4$$C_6:S_3\times A_4$$C_6:S_3\times A_4$$C_6^2:C_2^3$$C_2\times A_4\times D_6$$C_2\times A_4\times D_6$$C_2\times A_4\times D_6$$C_6^2:C_6$

Other information

Möbius function$-1$
Projective image$A_4:S_3^2$