Properties

Label 1728.46903.72.r1.c1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 31 & 81 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 17 & 48 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 64 & 35 \\ 21 & 43 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_6^2:(C_2\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$S_3\times D_4$
Normal closure:$C_6^2:S_4$
Core:$C_2^2$
Minimal over-subgroups:$\GL(2,\mathbb{Z}/4)$$C_6^2:C_2$$C_6^2:C_2$$C_6^2:C_2$$S_3\times D_4$
Maximal under-subgroups:$C_2\times C_6$$D_6$$C_3:C_4$$D_4$
Autjugate subgroups:1728.46903.72.r1.a11728.46903.72.r1.b1

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$1$
Projective image$S_3\times C_6:S_4$