Subgroup ($H$) information
| Description: | $C_6^2:S_4$ |
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| Index: | \(2\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
31 & 81 \\
36 & 53
\end{array}\right), \left(\begin{array}{rr}
49 & 36 \\
48 & 13
\end{array}\right), \left(\begin{array}{rr}
13 & 76 \\
36 & 49
\end{array}\right), \left(\begin{array}{rr}
17 & 48 \\
36 & 53
\end{array}\right), \left(\begin{array}{rr}
64 & 63 \\
21 & 43
\end{array}\right), \left(\begin{array}{rr}
1 & 42 \\
42 & 1
\end{array}\right), \left(\begin{array}{rr}
43 & 42 \\
0 & 43
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right)$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_6^2:(C_2\times S_4)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_6^2.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_3^4.Q_8.(S_3\times S_4)$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $S_3\times C_6:S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $S_3\times C_6:S_4$ |