Properties

Label 1728.46903.2.c1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 31 & 81 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 49 & 36 \\ 48 & 13 \end{array}\right), \left(\begin{array}{rr} 13 & 76 \\ 36 & 49 \end{array}\right), \left(\begin{array}{rr} 17 & 48 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 64 & 63 \\ 21 & 43 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(C_2\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_3^4.Q_8.(S_3\times S_4)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3\times C_6:S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:(C_2\times S_4)$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_6^2:(C_2\times S_4)$
Maximal under-subgroups:$A_4\times C_6^2$$C_6^2:D_6$$(C_3^2\times A_4):C_4$$C_6^2:D_4$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_3:\GL(2,\mathbb{Z}/4)$$C_6^2:S_3$

Other information

Möbius function$-1$
Projective image$S_3\times C_6:S_4$