Properties

Label 1728.46903.6.o1.c1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:\GL(2,\mathbb{Z}/4)$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 31 & 81 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 43 & 42 \\ 0 & 43 \end{array}\right), \left(\begin{array}{rr} 13 & 76 \\ 36 & 49 \end{array}\right), \left(\begin{array}{rr} 17 & 48 \\ 36 & 53 \end{array}\right), \left(\begin{array}{rr} 1 & 42 \\ 42 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 76 & 27 \\ 57 & 7 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(C_2\times S_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_6:S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3:\GL(2,\mathbb{Z}/4)$
Normal closure:$C_6^2:S_4$
Core:$C_2^2\times A_4$
Minimal over-subgroups:$C_6^2:S_4$
Maximal under-subgroups:$C_2^2:C_6^2$$C_6:S_4$$C_6.S_4$$C_2^4:S_3$$\GL(2,\mathbb{Z}/4)$$\GL(2,\mathbb{Z}/4)$$\GL(2,\mathbb{Z}/4)$$C_6^2:C_2$
Autjugate subgroups:1728.46903.6.o1.a11728.46903.6.o1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$S_3\times C_6:S_4$