Subgroup ($H$) information
| Description: | $C_3\times C_6^2$ | 
| Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) | 
| Index: | \(16\)\(\medspace = 2^{4} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\left(\begin{array}{rr}
15 & 0 \\
0 & 15
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
8 & 7 \\
21 & 15
\end{array}\right)$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).
Ambient group ($G$) information
| Description: | $C_2\times C_6^2:D_{12}$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2$ | 
| $\operatorname{Aut}(H)$ | $S_3\times \GL(3,3)$, of order \(67392\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 13 \) | 
| $\operatorname{res}(S)$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $4$ | 
| Möbius function | $-2$ | 
| Projective image | $S_3\times S_4$ |