Properties

Label 1728.46260.216.d1.b1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab^{3}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\SL(2,3).\SOPlus(4,2)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4:Q_8$
Normal closure:$\SL(2,3).S_3^2$
Core:$C_2$
Minimal over-subgroups:$C_6:C_4$$C_4\times S_3$$C_2\times Q_8$$C_4:C_4$$C_4:C_4$
Maximal under-subgroups:$C_2^2$$C_4$
Autjugate subgroups:1728.46260.216.d1.a1

Other information

Number of subgroups in this conjugacy class$54$
Möbius function$2$
Projective image$C_6^2:D_{12}$