Properties

Label 1728.34724.27.a1.a1
Order $ 2^{6} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b^{3}, c^{3}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2.C_2^2$
Normal closure:$(C_2\times C_4).S_3^3$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_4^2.D_6$$C_4^2.D_6$$C_4^2.D_6$
Maximal under-subgroups:$C_4\times D_4$$C_2^2.D_4$$C_2^2.D_4$$C_4^2:C_2$$C_4^2:C_2$$C_2^2:Q_8$$C_2^2.D_4$$C_4^2:C_2$$C_2^2:Q_8$$C_4^2:C_2$$C_4^2:C_2$$C_4.Q_8$$C_4.Q_8$$C_4.Q_8$$C_4\times Q_8$

Other information

Number of subgroups in this conjugacy class$27$
Möbius function not computed
Projective image not computed