Properties

Label 1728.34723.9.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.D_6$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{6}, c^{6}, b^{3}, c^{4}, c^{3}, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4).S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^8\times S_3$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2.D_6$
Normal closure:$(C_2\times C_4).S_3^3$
Core:$C_6.D_4$
Minimal over-subgroups:$C_2^2.D_6^2$$C_2^2.D_6^2$
Maximal under-subgroups:$D_6.D_4$$C_2^3.D_6$$D_6.D_4$$C_4^2:C_6$$C_2^3.D_6$$C_2^3.D_6$$C_2^3.D_6$$(C_4\times S_3):C_4$$D_6.D_4$$C_4^2:S_3$$D_6:Q_8$$(C_2\times C_4).D_6$$(C_2\times C_4).D_6$$C_{12}:Q_8$$C_{12}.Q_8$$C_4^2.C_2^2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function not computed
Projective image not computed