Properties

Label 1728.3469.3.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.S_3^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, d^{6}, b^{12}, b^{3}, b^{18}, d^{4}, c, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}^2.D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_6^2.C_2^6$
$\card{\operatorname{res}(S)}$\(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2.S_3^2$
Normal closure:$C_{12}^2.D_6$
Core:$C_{12}.D_{12}$
Minimal over-subgroups:$C_{12}^2.D_6$
Maximal under-subgroups:$C_{12}.D_{12}$$S_3\times C_6:C_8$$S_3\times C_6:C_8$$C_{12}.D_{12}$$C_{12}.D_{12}$$C_{12}\times D_{12}$$C_{12}:C_{24}$$C_4^2.D_6$$C_8\times D_{12}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_6.S_3^2$