Properties

Label 1728.33667.3.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.\SOPlus(4,2)$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, cd^{3}, c, b^{3}, b^{6}c, e^{2}, d^{2}e^{2}, e^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^3.D_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_3^2.C_2^6.C_2^2$
$\card{\operatorname{res}(S)}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^3.\SOPlus(4,2)$
Normal closure:$C_6^3.D_4$
Core:$(C_2\times C_6^2).C_4$
Minimal over-subgroups:$C_6^3.D_4$
Maximal under-subgroups:$(C_2\times C_6^2).C_4$$C_2^3:S_3^2$$C_2^3.S_3^2$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.D_4$$D_4:D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_6^2:D_{12}$