Subgroup ($H$) information
| Description: | $C_2^3.\SOPlus(4,2)$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Index: | \(3\) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$a, cd^{3}, c, b^{3}, b^{6}c, e^{2}, d^{2}e^{2}, e^{3}$
|
| Derived length: | $3$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_6^3.D_4$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^3.C_2^6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_3^2.C_2^6.C_2^2$ |
| $\card{\operatorname{res}(S)}$ | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $-1$ |
| Projective image | $C_6^2:D_{12}$ |