Properties

Label 1728.32842.192.a1.a1
Order $ 3^{2} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(3\)
Generators: $c^{2}, d^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6^2.(C_6\times D_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3\times C_2^3.D_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Outer Automorphisms: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times D_6:D_6).C_2^4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3\times C_6\times C_{12}$
Normalizer:$C_6^2.(C_6\times D_4)$
Complements:$C_3\times C_2^3.D_4$
Minimal over-subgroups:$C_3^3$$C_3\times C_6$$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_3:S_3$$C_3:S_3$$C_3:S_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Möbius function$0$
Projective image$C_6^2.(C_6\times D_4)$