Properties

Label 1728.32842.1.a1.a1
Order $ 2^{6} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.(C_6\times D_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{4}, b^{6}d^{6}, c^{3}d^{6}, b^{3}, b^{4}, c^{2}, d^{6}, d^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $C_6^2.(C_6\times D_4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times D_6:D_6).C_2^4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $(C_2\times D_6:D_6).C_2^4$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$W$$D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2.(C_6\times D_4)$
Complements:$C_1$
Maximal under-subgroups:$C_3\times C_6^2.D_4$$C_3\times C_6^2.D_4$$(S_3\times D_6):C_{12}$$(S_3\times D_6):C_{12}$$C_6.D_6^2$$C_3\times C_6^2.C_2^3$$(C_6\times C_{12}):C_{12}$$(C_6\times C_{12}).D_4$$C_3\times C_2^3.D_4$

Other information

Möbius function$1$
Projective image$D_6\wr C_2$