Properties

Label 1728.32070.6.l1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ab, c, e^{4}, e^{3}, d^{3}, e^{6}, b^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_3\times D_{12}):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times S_3).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_6:S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_6.\GL(2,\mathbb{Z}/4)$
Normal closure:$(C_3^2\times A_4):C_8$
Core:$C_{12}\times A_4$
Minimal over-subgroups:$(C_3^2\times A_4):C_8$$C_6.\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_{12}\times A_4$$C_{12}.D_4$$A_4:C_8$$A_4:C_8$$A_4:C_8$$C_3^2:C_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3^2:\GL(2,\mathbb{Z}/4)$