Properties

Label 1728.32070.2.c1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^2\times A_4):C_8$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ab, d^{2}, e^{4}, e^{3}, b^{2}, d^{3}, c, e^{6}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_3\times D_{12}):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times S_3).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_3^4.(Q_8\times A_4).D_6$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$A_4:S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$(C_3\times D_{12}):S_4$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_3\times D_{12}):S_4$
Maximal under-subgroups:$C_6^2:C_{12}$$C_6^2:C_8$$C_{12}.S_4$$C_{12}.S_4$$C_{12}.S_4$$C_{12}.S_4$$C_{12}.S_4$$C_{12}.S_4$$C_{12}.S_4$$C_{12}.S_4$$C_3^3:C_8$

Other information

Möbius function$-1$
Projective image$C_3^2:\GL(2,\mathbb{Z}/4)$