Properties

Label 1728.30313.6.k1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_{18}$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ac^{13}, de^{3}, c^{12}, b, e^{3}, c^{18}, c^{16}e^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2^2\times D_6):D_{18}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.S_4\times C_2^3\times S_3$
$\operatorname{Aut}(H)$ $C_3^2.S_4\times S_4$
$\operatorname{res}(S)$$C_6^2.S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2:D_9$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^3:D_{18}$
Normal closure:$C_6^2.S_4$
Core:$C_2^3\times C_6$
Minimal over-subgroups:$C_6^2.S_4$
Maximal under-subgroups:$C_2^3:C_{18}$$C_2^2:D_{18}$$C_2^2:D_{18}$$C_2^2:D_{18}$$C_2^2:D_{18}$$C_2^2:D_{18}$$C_2^2:D_{18}$$C_2^3:D_6$$C_2\times D_{18}$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_2^2:D_{18}\times S_3$