Properties

Label 1728.30269.4.e1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, e^{4}, c^{2}, b, d^{2}e^{6}, c^{3}, e^{6}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and rational.

Ambient group ($G$) information

Description: $(C_6\times \SL(2,3)):D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:C_3.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $(C_2^4\times \He_3).D_6.C_2^2$
$\card{\operatorname{res}(S)}$\(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:D_6$
Normal closure:$(C_6\times \SL(2,3)):D_6$
Core:$C_6:D_6$
Minimal over-subgroups:$(C_6\times \SL(2,3)):D_6$
Maximal under-subgroups:$C_6.S_3^2$$C_6^2:C_6$$C_6^2:S_3$$C_6^2:C_6$$C_6.S_3^2$$D_6^2$$D_6^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_6^2:D_6$