Subgroup ($H$) information
Description: | $C_6^2:D_6$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a, e^{4}, c^{2}, b, d^{2}e^{6}, c^{3}, e^{6}$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and rational.
Ambient group ($G$) information
Description: | $(C_6\times \SL(2,3)):D_6$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2:C_3.C_2^5.C_2^2$ |
$\operatorname{Aut}(H)$ | $(C_2^4\times \He_3).D_6.C_2^2$ |
$\card{\operatorname{res}(S)}$ | \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_6^2:D_6$ |