Properties

Label 1728.2737.1.a1.a1
Order $ 2^{6} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_6^2.D_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, e, b^{2}, c^{12}, c^{3}, c^{6}, de^{2}, c^{8}de^{2}, bc^{4}de^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup.

Ambient group ($G$) information

Description: $C_6.C_6^2.D_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_3.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $\He_3.C_2^6.C_2^2$
$W$$C_6.\SOPlus(4,2)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6.C_6^2.D_4$
Complements:$C_1$
Maximal under-subgroups:$(C_6\times C_{12}).D_6$$(C_6\times C_{12}).D_6$$(C_2\times \He_3).C_4^2$$C_4^2.D_6$

Other information

Möbius function$1$
Projective image$C_6.\SOPlus(4,2)$