Subgroup ($H$) information
| Description: | $C_3$ |
| Order: | \(3\) |
| Index: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(3\) |
| Generators: |
$b^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_6^3.C_2^3$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6.(S_3\times C_4^2)$ |
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | Group of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \) |
| Outer Automorphisms: | $C_2^8$, of order \(256\)\(\medspace = 2^{8} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\card{W}$ | \(2\) |
Related subgroups
| Centralizer: | $C_6^3.C_2^2$ | |||||||||
| Normalizer: | $C_6^3.C_2^3$ | |||||||||
| Complements: | $C_6.(S_3\times C_4^2)$ | |||||||||
| Minimal over-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | not computed |
| Projective image | not computed |