Subgroup ($H$) information
| Description: | $D_4\times C_{18}$ |
| Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Generators: |
$a^{3}cd^{18}, d^{24}, d^{36}, bd^{18}, d^{54}, d^{8}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_9\times Q_{16}.A_4$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{12}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\wr C_2^2\times C_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_{12}.C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $0$ |
| Projective image | $D_4\times A_4$ |