Subgroup ($H$) information
Description: | $C_{12}^2.C_2$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$b^{3}, b^{6}, c^{4}, a^{6}, c^{6}, c^{9}, b^{4}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.
Ambient group ($G$) information
Description: | $C_{12}^2.D_6$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\GL(2,3).C_2^6$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2^4.C_2^3.C_2^2\times \GL(2,3)$ |
$\card{W}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Möbius function | not computed |
Projective image | not computed |