Properties

Label 1728.1701.12.i1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.C_6^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, b^{6}, c^{4}, a^{6}, c^{6}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}^2.D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,3).C_2^6$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^4.S_4^2$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_{12}^2.C_6$
Normal closure:$C_{12}^2.C_2$
Core:$C_6\times C_{12}$
Minimal over-subgroups:$C_{12}.C_6^2$$C_{12}^2.C_2$
Maximal under-subgroups:$C_6\times C_{12}$$C_6\times C_{12}$$C_6\times C_{12}$$Q_8\times C_3^2$$Q_8\times C_3^2$$C_6\times Q_8$$C_6\times Q_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed