Properties

Label 1728.1701.12.a1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{6}, c^{6}, b^{6}, c^{9}, a^{4}b^{6}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_{12}^2.D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\GL(2,3).C_2^6$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(2,\mathbb{Z}/4)$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}^2$
Normalizer:$C_{12}^2.D_6$
Minimal over-subgroups:$C_4^2\times \He_3$$C_{12}^2.C_2$$C_{12}:C_{24}$$C_{12}:C_{24}$
Maximal under-subgroups:$C_6\times C_{12}$$C_6\times C_{12}$$C_6\times C_{12}$$C_4\times C_{12}$$C_4\times C_{12}$

Other information

Möbius function not computed
Projective image not computed