Properties

Label 169869312.nb.1327104._.A
Order $ 2^{7} $
Index $ 2^{14} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^7$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (9,10)(11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{10}.A_4^3:A_4.D_4$
Order: \(169869312\)\(\medspace = 2^{21} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $A_4^3.C_2^5:S_4$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Automorphism Group: $C_2^6.C_3^3.C_2^6.C_6.C_2^4$, of order \(10616832\)\(\medspace = 2^{17} \cdot 3^{4} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $5$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2717908992\)\(\medspace = 2^{25} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $\GL(7,2)$, of order \(163849992929280\)\(\medspace = 2^{21} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed