Properties

Label 169869312.nb
Order \( 2^{21} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{25} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13), (3,4)(7,8)(9,10)(13,35)(14,36)(15,33,16,34)(17,31,21,28,18,32,22,27)(19,29,23,25)(20,30,24,26) >;
 
Copy content gap:G := Group( (1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13), (3,4)(7,8)(9,10)(13,35)(14,36)(15,33,16,34)(17,31,21,28,18,32,22,27)(19,29,23,25)(20,30,24,26) );
 
Copy content sage:G = PermutationGroup(['(1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13)', '(3,4)(7,8)(9,10)(13,35)(14,36)(15,33,16,34)(17,31,21,28,18,32,22,27)(19,29,23,25)(20,30,24,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(13998772360176394161602463604573558246262003350231178383569037078618652977696340311985268073098495453583934616920917249642863426214911875260805548416887889937075533307413919432694557846503269269195147205180780543146211378174848911291173797543537681182620236682783989704024908830749789211923105190234670821925846044659929935236727053710664234069389763953439295202728406360846308811726639830255499725980373391458948974854190673086718788973621124628777463966941990747685603071172677954187652297666791569144240335385157770987434839156460056877085815180507661125111385426930821278137406229014148690109920969564455688255328765856111354513819013773011336338756536276125203120370400418333961948055586213313619046607722851743236196674546385048958842948359767427641443945023052397955886882077965889474350147611311610773067388202243101026912189892340424892623671626245651065171797261334942511211563075285248481019286231193716187008661644957739402429001833867496990209112842488594845874723504086628743263013995388082204550459834172485271927543724604662446651354515672374531866217204737054789756789934443993494932687498569920955232941984074818557148610361372484728959264278132022889592727398953296189312957663151982905507924790176276997235294800614537315570241360538591126203844409151993267470951353098211145241522974703555517114145346908644623065046646011589278246232758479166460256316526625188692358349900417657389043218718643894430823806098463858611235235382031932322135384854212501199743346251746217645567578133177263602720701030773262048318581125183603804544830715628550404931381525495346612549428143417620910683156189211124368494876404289453976966735948922113248088335807711749740469128211665101791892098517721466658651612406691857570698419603687646280431011264196724515184844261707048797433671272774384873205261947011382714368,169869312)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25;
 

Group information

Description:$C_2^{10}.A_4^3:A_4.D_4$
Order: \(169869312\)\(\medspace = 2^{21} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2717908992\)\(\medspace = 2^{25} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 232447 330848 19493888 13656992 15925248 9437184 61247488 9437184 21233664 18874368 169869312
Conjugacy classes   1 181 4 660 164 80 2 286 2 32 4 1416
Divisions 1 181 4 554 164 68 2 220 2 16 2 1214
Autjugacy classes 1 171 4 378 160 30 1 160 1 8 1 915

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid b^{12}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([25, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2485090200, 7660141101, 126, 4539120902, 202, 16556147203, 19140159004, 4053802529, 3145414554, 2557891204, 288769604, 16104322805, 8591517030, 2821815955, 2846358530, 398174205, 430, 13417588806, 1209631, 58111256, 2654769681, 156720306, 11861184007, 6881337632, 6597849657, 2755687282, 1260760907, 276226932, 886357, 582, 34040260808, 21633, 388858, 3425600783, 10908, 205291933, 34137072009, 14904180034, 10283502059, 4434633084, 1590165109, 111987134, 2666409, 46450684, 32594459, 734, 30223670410, 15191352035, 5237364060, 5212033285, 499118510, 866863935, 434610160, 115556285, 20475060, 810, 32947430411, 11301724836, 9134935261, 1608098486, 1372809711, 86536, 56685786, 39143239212, 10674892837, 3531832262, 2655244887, 154100812, 85474487, 260322237, 124792387, 42500462, 20689737, 1156612, 2040962, 41615380813, 27452779238, 943034463, 2338081288, 160662713, 163113438, 363771613, 92118788, 26888613, 8727838, 16636463, 7692588, 719213, 1038, 40932864014, 20483928039, 14285484064, 5120982089, 664848114, 2592139, 432189, 27702214, 23850239, 16497264, 5962789, 43765401615, 15135206440, 8842867265, 3804537690, 1823558515, 102384140, 2462565, 59212990, 29894615, 38054640, 1469065, 9513890, 1061140, 46289232016, 9114638441, 4522068066, 2278659691, 734541, 62791391, 61416, 26928241, 18727466, 6732291, 49455360017, 34208179242, 17021275267, 8552044892, 2857096917, 1027306942, 5103167, 11318642, 14213067, 2829892, 57854498418, 23844855643, 14409964868, 5985222393, 866764918, 745594343, 126044293, 62133068, 12038643, 501943, 30984768019, 28037664044, 17100180069, 9663624094, 30792244, 8256269, 7698294, 548344, 31192711220, 22933789245, 17684389870, 8493830195, 3434886120, 1623321145, 858721670, 147023295, 36014170, 34851845, 25754670, 11938795, 71745, 425304021, 42042607246, 6015438071, 7590310296, 1216512121, 1135134146, 42510796, 62835521, 35138646, 19047871, 12164096, 1593146, 19047312022, 9782985647, 17388496872, 7173295297, 819616622, 1064466597, 730953397, 260488997, 63590622, 33120247, 23667272, 6293097, 1228547, 91028966423, 127526448, 6419865673, 31881698, 536025748, 864198, 44669023, 83170800024, 13147920049, 5834565074, 11315700099, 2059177624, 1675563899, 100682049, 51840199, 138690224, 35130249, 4365274, 7102799, 1010349]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.13, G.14, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(13998772360176394161602463604573558246262003350231178383569037078618652977696340311985268073098495453583934616920917249642863426214911875260805548416887889937075533307413919432694557846503269269195147205180780543146211378174848911291173797543537681182620236682783989704024908830749789211923105190234670821925846044659929935236727053710664234069389763953439295202728406360846308811726639830255499725980373391458948974854190673086718788973621124628777463966941990747685603071172677954187652297666791569144240335385157770987434839156460056877085815180507661125111385426930821278137406229014148690109920969564455688255328765856111354513819013773011336338756536276125203120370400418333961948055586213313619046607722851743236196674546385048958842948359767427641443945023052397955886882077965889474350147611311610773067388202243101026912189892340424892623671626245651065171797261334942511211563075285248481019286231193716187008661644957739402429001833867496990209112842488594845874723504086628743263013995388082204550459834172485271927543724604662446651354515672374531866217204737054789756789934443993494932687498569920955232941984074818557148610361372484728959264278132022889592727398953296189312957663151982905507924790176276997235294800614537315570241360538591126203844409151993267470951353098211145241522974703555517114145346908644623065046646011589278246232758479166460256316526625188692358349900417657389043218718643894430823806098463858611235235382031932322135384854212501199743346251746217645567578133177263602720701030773262048318581125183603804544830715628550404931381525495346612549428143417620910683156189211124368494876404289453976966735948922113248088335807711749740469128211665101791892098517721466658651612406691857570698419603687646280431011264196724515184844261707048797433671272774384873205261947011382714368,169869312); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.13; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23; q := G.24; r := G.25;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(13998772360176394161602463604573558246262003350231178383569037078618652977696340311985268073098495453583934616920917249642863426214911875260805548416887889937075533307413919432694557846503269269195147205180780543146211378174848911291173797543537681182620236682783989704024908830749789211923105190234670821925846044659929935236727053710664234069389763953439295202728406360846308811726639830255499725980373391458948974854190673086718788973621124628777463966941990747685603071172677954187652297666791569144240335385157770987434839156460056877085815180507661125111385426930821278137406229014148690109920969564455688255328765856111354513819013773011336338756536276125203120370400418333961948055586213313619046607722851743236196674546385048958842948359767427641443945023052397955886882077965889474350147611311610773067388202243101026912189892340424892623671626245651065171797261334942511211563075285248481019286231193716187008661644957739402429001833867496990209112842488594845874723504086628743263013995388082204550459834172485271927543724604662446651354515672374531866217204737054789756789934443993494932687498569920955232941984074818557148610361372484728959264278132022889592727398953296189312957663151982905507924790176276997235294800614537315570241360538591126203844409151993267470951353098211145241522974703555517114145346908644623065046646011589278246232758479166460256316526625188692358349900417657389043218718643894430823806098463858611235235382031932322135384854212501199743346251746217645567578133177263602720701030773262048318581125183603804544830715628550404931381525495346612549428143417620910683156189211124368494876404289453976966735948922113248088335807711749740469128211665101791892098517721466658651612406691857570698419603687646280431011264196724515184844261707048797433671272774384873205261947011382714368,169869312)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(13998772360176394161602463604573558246262003350231178383569037078618652977696340311985268073098495453583934616920917249642863426214911875260805548416887889937075533307413919432694557846503269269195147205180780543146211378174848911291173797543537681182620236682783989704024908830749789211923105190234670821925846044659929935236727053710664234069389763953439295202728406360846308811726639830255499725980373391458948974854190673086718788973621124628777463966941990747685603071172677954187652297666791569144240335385157770987434839156460056877085815180507661125111385426930821278137406229014148690109920969564455688255328765856111354513819013773011336338756536276125203120370400418333961948055586213313619046607722851743236196674546385048958842948359767427641443945023052397955886882077965889474350147611311610773067388202243101026912189892340424892623671626245651065171797261334942511211563075285248481019286231193716187008661644957739402429001833867496990209112842488594845874723504086628743263013995388082204550459834172485271927543724604662446651354515672374531866217204737054789756789934443993494932687498569920955232941984074818557148610361372484728959264278132022889592727398953296189312957663151982905507924790176276997235294800614537315570241360538591126203844409151993267470951353098211145241522974703555517114145346908644623065046646011589278246232758479166460256316526625188692358349900417657389043218718643894430823806098463858611235235382031932322135384854212501199743346251746217645567578133177263602720701030773262048318581125183603804544830715628550404931381525495346612549428143417620910683156189211124368494876404289453976966735948922113248088335807711749740469128211665101791892098517721466658651612406691857570698419603687646280431011264196724515184844261707048797433671272774384873205261947011382714368,169869312)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25;
 
Permutation group:Degree $36$ $\langle(1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13), (3,4)(7,8)(9,10)(13,35)(14,36)(15,33,16,34)(17,31,21,28,18,32,22,27)(19,29,23,25)(20,30,24,26) >;
 
Copy content gap:G := Group( (1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13), (3,4)(7,8)(9,10)(13,35)(14,36)(15,33,16,34)(17,31,21,28,18,32,22,27)(19,29,23,25)(20,30,24,26) );
 
Copy content sage:G = PermutationGroup(['(1,36,20,4,34,17)(2,35,19,3,33,18)(5,32,22,7,30,24)(6,31,21,8,29,23)(9,28,16,11,26,14,10,27,15,12,25,13)', '(3,4)(7,8)(9,10)(13,35)(14,36)(15,33,16,34)(17,31,21,28,18,32,22,27)(19,29,23,25)(20,30,24,26)'])
 
Transitive group: 36T81243 36T81536 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{15}$ . $(C_6^3:S_4)$ $C_2^{11}$ . $(C_2\times A_4^3:S_4)$ $C_2^{10}$ . $(A_4^3.C_4:S_4)$ $C_2^{13}$ . $(C_6:D_6^2:S_4)$ all 36

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 47 normal subgroups (43 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2\times C_2^{10}.A_4^3:A_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^9$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1416 \times 1416$ character table is not available for this group.

Rational character table

The $1214 \times 1214$ rational character table is not available for this group.