Subgroup ($H$) information
| Description: | not computed |
| Order: | \(131072\)\(\medspace = 2^{17} \) |
| Index: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Exponent: | not computed |
| Generators: |
$\langle(15,16)(21,22)(27,28)(31,32), (21,22)(23,24)(27,28)(35,36), (19,20)(23,24) \!\cdots\! \rangle$
|
| Nilpotency class: | not computed |
| Derived length: | not computed |
The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
| Description: | $C_2^{10}.A_4^3:A_4.D_4$ |
| Order: | \(169869312\)\(\medspace = 2^{21} \cdot 3^{4} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $5$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times C_3^3:S_4$ |
| Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $S_3^3:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(2717908992\)\(\medspace = 2^{25} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | not computed |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |