Properties

Label 169869312.mt.8._.BV
Order $ 2^{18} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9.A_4^3:S_4$
Order: \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(29,30)(31,32)(33,34)(35,36), (1,7,11)(2,8,12)(3,6,9)(4,5,10)(13,22,20,15,23,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.A_4^3:S_4$
Order: \(169869312\)\(\medspace = 2^{21} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(5435817984\)\(\medspace = 2^{26} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2^{12}.C_3^3.C_2^4.C_6.C_2^3$, of order \(84934656\)\(\medspace = 2^{20} \cdot 3^{4} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed