| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{2}=e^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([22, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 257621232, 608494041, 111, 891078938, 206178238, 657523683, 624903865, 112320167, 1212396244, 366605606, 109449498, 186282210, 312, 2080241861, 715432635, 230343745, 141021479, 13685875, 2364493830, 1428810796, 257465258, 27684960, 26380294, 21439226, 446, 410015239, 1139922461, 151479027, 231754057, 111011039, 54896277, 64608200, 1522350750, 44668852, 269892290, 106442520, 69653152, 29161976, 10749780, 580, 3963991689, 1548476191, 266906693, 363570315, 166684417, 47029079, 19786941, 10931083, 647, 2571085450, 679146896, 23286, 40220476, 50669090, 9269688, 24347278, 13140764, 4040036363, 1505490657, 1396289719, 122373603, 1539791, 617925, 912571, 1674497, 836583, 1396631820, 1513450258, 453528560, 139119652, 83150618, 26728560, 844438, 3864620, 142638, 303964, 368050, 848, 255467533, 1041030179, 51093561, 170844005, 4745853, 2365651, 1186649, 1180539374, 2169192996, 958894258, 326189240, 179061402, 23133454, 34499666, 1805928, 2106910, 2875172, 150714, 4238, 4686004239, 2335703077, 595330619, 12165223, 1622163, 1013929, 338111, 135381, 84715, 5277457168, 722208998, 1718316132, 245583464, 40176724, 3231530, 1095264, 475942, 274004, 9256, 5255331857, 2635877415, 513277, 27371603, 2281109, 228267, 76225, 190295, 19245, 4923224082, 36837544, 359752598, 527282004, 34670698, 45384918, 20766412, 6922274, 3782280, 1730758, 40410, 223534099, 2919723881, 443124063, 103403605, 222013547, 38142871, 7096493, 6531555, 3931177, 1627799, 229083, 6713407028, 3776927658, 125737984, 182236910, 59983416, 84228736, 23418008, 31734030, 1375108, 5510954, 870648, 137036, 165597717, 4848855307, 587798705, 434903127, 83635309, 15193881, 21187759, 7161461, 618771, 1796365, 66109]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.12, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p"]);
gap:G := PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.12; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21; p := G.22;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
|
| Permutation group: | Degree $24$
$\langle(1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 24 | (1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15), (1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15) >;
gap:G := Group( (1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15), (1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15) );
sage:G = PermutationGroup(['(1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24)', '(1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15)', '(1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15)'])
|
| Transitive group: |
24T24181 |
36T66620 |
36T66621 |
36T66622 |
all 17 |
| Direct product: |
not isomorphic to a non-trivial direct product |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_2^9$ . $(A_4^3:S_4)$ |
$(C_2^{12}.C_6^3)$ . $S_4$ (2) |
$C_2^{12}$ . $(C_6^3:S_4)$ |
$C_2^7$ . $(A_4:S_4^2.S_4)$ |
all 17 |
Elements of the group are displayed as permutations of degree 24.
The $406 \times 406$ character table is not available for this group.
The $394 \times 394$ rational character table is not available for this group.