Properties

Label 21233664.bk
Order \( 2^{18} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{20} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $24$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15), (1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15) >;
 
Copy content gap:G := Group( (1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15), (1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15) );
 
Copy content sage:G = PermutationGroup(['(1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24)', '(1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15)', '(1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 

Group information

Description:$C_2^9.A_4^3:S_4$
Order: \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^{12}.C_3^3.C_2^4.C_6.C_2^3$, of order \(84934656\)\(\medspace = 2^{20} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 18, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 56383 109664 2409408 2502560 1990656 2359296 6792192 2359296 2654208 21233664
Conjugacy classes   1 51 4 172 58 30 2 70 2 16 406
Divisions 1 51 4 172 58 30 2 66 2 8 394
Autjugacy classes 1 33 4 96 43 15 1 41 1 4 239

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{2}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 257621232, 608494041, 111, 891078938, 206178238, 657523683, 624903865, 112320167, 1212396244, 366605606, 109449498, 186282210, 312, 2080241861, 715432635, 230343745, 141021479, 13685875, 2364493830, 1428810796, 257465258, 27684960, 26380294, 21439226, 446, 410015239, 1139922461, 151479027, 231754057, 111011039, 54896277, 64608200, 1522350750, 44668852, 269892290, 106442520, 69653152, 29161976, 10749780, 580, 3963991689, 1548476191, 266906693, 363570315, 166684417, 47029079, 19786941, 10931083, 647, 2571085450, 679146896, 23286, 40220476, 50669090, 9269688, 24347278, 13140764, 4040036363, 1505490657, 1396289719, 122373603, 1539791, 617925, 912571, 1674497, 836583, 1396631820, 1513450258, 453528560, 139119652, 83150618, 26728560, 844438, 3864620, 142638, 303964, 368050, 848, 255467533, 1041030179, 51093561, 170844005, 4745853, 2365651, 1186649, 1180539374, 2169192996, 958894258, 326189240, 179061402, 23133454, 34499666, 1805928, 2106910, 2875172, 150714, 4238, 4686004239, 2335703077, 595330619, 12165223, 1622163, 1013929, 338111, 135381, 84715, 5277457168, 722208998, 1718316132, 245583464, 40176724, 3231530, 1095264, 475942, 274004, 9256, 5255331857, 2635877415, 513277, 27371603, 2281109, 228267, 76225, 190295, 19245, 4923224082, 36837544, 359752598, 527282004, 34670698, 45384918, 20766412, 6922274, 3782280, 1730758, 40410, 223534099, 2919723881, 443124063, 103403605, 222013547, 38142871, 7096493, 6531555, 3931177, 1627799, 229083, 6713407028, 3776927658, 125737984, 182236910, 59983416, 84228736, 23418008, 31734030, 1375108, 5510954, 870648, 137036, 165597717, 4848855307, 587798705, 434903127, 83635309, 15193881, 21187759, 7161461, 618771, 1796365, 66109]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.12, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.12; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21; p := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(387510011070638398428732227779985857741666565209411505393102260225579459639620295305558887130254512198958845663748729865858158654768380671276725816960144467388631448831885288197215424833404389451005430631458995968814167711688175480466099082992214835975775382459218175512498703704907416582956676606134362044630333687773797699969491899737656963581943791894252736456566207066539974731893598415827167641552666335419203565959887805266492711821478215022260528395696772294931157589065231198535417206124122127703443100624038720856603122323009373577998746483602453497098522863066725860200213288675945579893587361937187250344933091440461820981710238377706635588616551310852274745875567620036094197432005818560251483771001718069341389149471512474022405021695891418174386640331030472536849353302158659633840976774486746825042965261962332078859549749558199758113911784116250288613574936436407190981594051816195036604249381996784546689381241511176384844441072415828377064279675609439025824175061691406807171878374196191933302661652460575111224487314372061426362085109909018065721030586441110933143106752436593653932045477362169206721993036019776635355253743211471613116267895636733980577484495645729766149913807114219202268366582382021439080731181170661018308458021117314777159262821120877384677308763843365502155338605577898121832777728,21233664)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.12; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 
Permutation group:Degree $24$ $\langle(1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15), (1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15) >;
 
Copy content gap:G := Group( (1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24), (1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15), (1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15) );
 
Copy content sage:G = PermutationGroup(['(1,10)(2,12,4,9)(3,11)(5,16,8,15,7,13,6,14)(17,23,18,22,20,21)(19,24)', '(1,20,7,24,3,17,6,23)(2,18,8,22,4,19,5,21)(9,12,11)(13,16,15)', '(1,18,11,7,22,14,4,17,10,5,23,16,3,19,9,8,24,13)(2,20,12,6,21,15)'])
 
Transitive group: 24T24181 36T66620 36T66621 36T66622 all 17
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^9$ . $(A_4^3:S_4)$ $(C_2^{12}.C_6^3)$ . $S_4$ (2) $C_2^{12}$ . $(C_6^3:S_4)$ $C_2^7$ . $(A_4:S_4^2.S_4)$ all 17

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24 normal subgroups (18 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_2^9.A_4^3:S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^{12}.C_3^3.C_2^4.C_3$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^6$ $G/\Phi \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9.C_2^6$ $G/\operatorname{Fit} \simeq$ $C_3^3:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^9.A_4^3:S_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^6$ $G/\operatorname{soc} \simeq$ $A_4^3.C_2^3:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2^6.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_2^9.A_4^3:S_4$ $\rhd$ $C_2^{12}.C_3^3.C_2^4.C_3$ $\rhd$ $C_2^{12}.C_3.D_6^2$ $\rhd$ $C_2^{12}.C_3^3$ $\rhd$ $C_2^{12}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^9.A_4^3:S_4$ $\rhd$ $C_2^9.A_4^3:A_4$ $\rhd$ $C_2^{12}.C_3^3.C_2^4.C_3$ $\rhd$ $C_2^{12}.C_3.D_6^2$ $\rhd$ $C_2^{12}.C_3^2.D_6$ $\rhd$ $C_2^{12}.C_3^3$ $\rhd$ $C_2^{12}$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^9.A_4^3:S_4$ $\rhd$ $C_2^{12}.C_3^3.C_2^4.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $406 \times 406$ character table is not available for this group.

Rational character table

The $394 \times 394$ rational character table is not available for this group.