Properties

Label 16926659444736.b.24._.FN
Order $ 2^{14} \cdot 3^{16} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^{12}.C_2^8.C_3^4.C_4^2.C_2^2$
Order: \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(16,17,18)(20,21)(22,23,24)(25,27,26)(31,33), (14,15)(26,27)(31,32,33), (14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^{12}.C_2^8.C_3^4.C_4^2.C_2^4.C_6$
Order: \(16926659444736\)\(\medspace = 2^{17} \cdot 3^{17} \)
Exponent: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Derived length:$6$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(67706637778944\)\(\medspace = 2^{19} \cdot 3^{17} \)
$\operatorname{Aut}(H)$ Group of order \(5642219814912\)\(\medspace = 2^{17} \cdot 3^{16} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$6$
Möbius function not computed
Projective image not computed