Properties

Label 705277476864.dm
Order \( 2^{14} \cdot 3^{16} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32), (1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34), (1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8), (1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22) >;
 
Copy content gap:G := Group( (1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32), (1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34), (1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8), (1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22) );
 
Copy content sage:G = PermutationGroup(['(1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32)', '(1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34)', '(1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8)', '(1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_4^2.C_2^2$
Order: \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(5642219814912\)\(\medspace = 2^{17} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 25832223 96059600 8996373216 49242232368 41630962176 3390724800 262268119296 102902094144 156728328192 79996750848 705277476864
Conjugacy classes   1 33 177 74 1666 16 267 1599 462 40 337 4672
Divisions 1 33 177 74 1660 16 267 1531 454 38 247 4498
Autjugacy classes 1 25 119 45 988 8 114 821 225 18 121 2485

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([30, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 12146198789760, 21165582620521, 151, 2247067705322, 8202544987742, 3002839458243, 38479480225473, 14033556966063, 333, 22486124018404, 1743973748434, 26366204223064, 4401091265524, 33015756922565, 28889428307075, 2955227580065, 12214033723535, 4328313762005, 515, 5062086771846, 64450305480996, 1843793011266, 6985852142736, 1416965071326, 1984086169566, 40828162421767, 24757498652197, 21455315953987, 20012869336417, 8396434180927, 4745084780317, 1878871521067, 697, 94217909788808, 18418638358118, 33619032452228, 1819937678498, 8851956696128, 3978484254518, 2767563092168, 60872688960009, 6269965401639, 39703345560069, 8727079567299, 208175432529, 1496452465959, 712754939889, 309859045419, 235202341749, 879, 100241694643210, 24674636828200, 46223333925190, 2560907231620, 8413100277250, 4841540320480, 2725812920350, 764740223500, 326166732790, 34611287350, 180281762380811, 29577571200041, 9792632039111, 28226183325221, 7902244513571, 1082802978161, 1693262053991, 511960215101, 512389353131, 27285269321, 74007498191, 1061, 65815845937932, 50047099914282, 20116512000072, 17227131140022, 2340043992132, 3202148402082, 2994271712832, 1084334921502, 190077956892, 186944856042, 66800090292, 85195282851853, 109655150129323, 19300172149513, 14279349184903, 1580497425493, 633089815003, 3699924741013, 1339623041623, 585828395713, 50519352523, 22730856433, 34573062223, 14390733793, 1243, 97714316678414, 20694735360044, 17681326963274, 32250436182104, 11565945417734, 4743992577764, 39744496994, 1125993765824, 471730748654, 222270966284, 48394973114, 26932181744, 5914234274, 2983651634, 315941962199055, 131138206433325, 16516253859915, 20840398018665, 4850895237255, 2345112276645, 3997252800195, 67366183965, 51625071675, 17207130585, 19644232695, 6548279445, 3274138515, 1425, 146934136442896, 127796330465326, 66518231823436, 14646926770666, 10741832029576, 786701067286, 3982499473156, 281117304286, 3501876556, 1395706, 583646416, 7860148966, 1955343496, 301519512944657, 26061974415407, 84874254935117, 18452725305227, 13309033639817, 4069814544167, 778709868677, 1766447948387, 798080040257, 225340432127, 96956358797, 37556738987, 3335525297, 7408535807, 2070170897, 42587, 689033477, 1607, 241615580989458, 158583823626288, 68506788925518, 23126506980588, 3127976870538, 8557657516968, 5599509419718, 261134565348, 933251570178, 237857498208, 63054923358, 39642916668, 10509154218, 6607153128, 1751526078, 48653478, 240082486617619, 26197978521649, 35985436876879, 36151008307309, 23969128089739, 11984899968169, 215074828999, 1962743270629, 886767264259, 216367200289, 87223392319, 14849827549, 17282549179, 6920251609, 2422742839, 766735669, 162040129, 63414559, 1789, 95232720522260, 126945108541490, 53077209292880, 24542344068590, 13270007762060, 6634651161770, 155901957320, 12531335330, 4325711360, 1443536990, 29128740860, 9709580570, 120295160, 1607694950, 15650, 308339593816341, 74075572707891, 33601309885521, 24435502027311, 25676565995661, 13805828974251, 1202413766601, 2029740530631, 503368406901, 32040360291, 119161057281, 60855537951, 15570118461, 1607079291, 3310172361, 1684346871, 212339691, 125494941, 1971, 185902242048022, 121654757675572, 77139763119442, 10313305888432, 18738455811982, 3079060333372, 2510644973962, 1315406273992, 475557180022, 260245898212, 6889225282, 64430042032, 16826914462, 5611058332, 191665882, 882019192, 66772, 457208495308823, 116688432660533, 56886578380883, 7567426529393, 14511882413, 1512460615913, 1177881108743, 197522841893, 126038384963, 5486746013, 3501066683, 152410133, 97252403, 9293, 377981531136024, 194473469376054, 54507072528084, 32109530328114, 5116211640144, 10625340294174, 2703781350204, 1437413796234, 416124864264, 325997784294, 6835104324, 45444996354, 1139184384, 6129432414, 5724270444, 318024534, 412725732756505, 14646019415095, 13143109075285, 51379067975155, 28771658697745, 5607323111695, 2701447463725, 2772258316075, 1411851617545, 445216487335, 114306267205, 58218713635, 18688138945, 10574479135, 3175511485, 1005826075, 92570935, 83229685, 54953155, 9159415, 252333763591706, 34705166377016, 95451905433686, 27743949342836, 3996209571986, 1989034859696, 8060897088206, 664372109036, 203166351626, 397363553576, 55143893126, 10747443296, 1531600286, 79898876, 298550336, 42545006, 57591596, 9594296, 379610709166107, 105104934789177, 71116653888087, 54313287678837, 19911330351507, 9972595705137, 2676691483407, 2320503655917, 615377710347, 325847370537, 15291037767, 55755786597, 40427735427, 2930982177, 424751487, 2245985757, 14717337, 26379957, 10221777, 403767557913628, 254564937008698, 31190579746648, 52699593755638, 6951756130708, 14806717481698, 6148039579408, 598650856078, 1352898156508, 330098017258, 156003667528, 61497258838, 26141551588, 6892154338, 4333435648, 1452308878, 10221298, 114819688, 23949958, 1274338, 380055102105629, 79589835878459, 20873782944089, 18976544697719, 8823116419349, 11144114913779, 6875293543409, 2981068790639, 485550385469, 77850201899, 4115059529, 4772973959, 10729713989, 10588968419, 7039613249, 611323679, 251240939, 3175769, 41126999, 9229259]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.25, G.26, G.27, G.28, G.29, G.30]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.25; o := G.26; p := G.27; q := G.28; r := G.29; s := G.30;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 
Permutation group:Degree $36$ $\langle(1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32), (1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34), (1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8), (1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22) >;
 
Copy content gap:G := Group( (1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32), (1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34), (1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8), (1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22) );
 
Copy content sage:G = PermutationGroup(['(1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32)', '(1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34)', '(1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8)', '(1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22)'])
 
Transitive group: 36T118935 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.C_2^3)$ $(C_3^{12}.C_2^8.C_3^4.C_4:D_4)$ . $C_2$ (2) $(C_3^{12}.C_2^8.C_3^4.C_4^2)$ . $C_2^2$ (2) $(C_3^{12}.C_2^8.C_3^2.D_6\wr C_2)$ . $C_2$ (2) all 30

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 86 normal subgroups (26 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^8.C_2.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4672 \times 4672$ character table is not available for this group.

Rational character table

The $4498 \times 4498$ rational character table is not available for this group.