| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid e^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([30, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 12146198789760, 21165582620521, 151, 2247067705322, 8202544987742, 3002839458243, 38479480225473, 14033556966063, 333, 22486124018404, 1743973748434, 26366204223064, 4401091265524, 33015756922565, 28889428307075, 2955227580065, 12214033723535, 4328313762005, 515, 5062086771846, 64450305480996, 1843793011266, 6985852142736, 1416965071326, 1984086169566, 40828162421767, 24757498652197, 21455315953987, 20012869336417, 8396434180927, 4745084780317, 1878871521067, 697, 94217909788808, 18418638358118, 33619032452228, 1819937678498, 8851956696128, 3978484254518, 2767563092168, 60872688960009, 6269965401639, 39703345560069, 8727079567299, 208175432529, 1496452465959, 712754939889, 309859045419, 235202341749, 879, 100241694643210, 24674636828200, 46223333925190, 2560907231620, 8413100277250, 4841540320480, 2725812920350, 764740223500, 326166732790, 34611287350, 180281762380811, 29577571200041, 9792632039111, 28226183325221, 7902244513571, 1082802978161, 1693262053991, 511960215101, 512389353131, 27285269321, 74007498191, 1061, 65815845937932, 50047099914282, 20116512000072, 17227131140022, 2340043992132, 3202148402082, 2994271712832, 1084334921502, 190077956892, 186944856042, 66800090292, 85195282851853, 109655150129323, 19300172149513, 14279349184903, 1580497425493, 633089815003, 3699924741013, 1339623041623, 585828395713, 50519352523, 22730856433, 34573062223, 14390733793, 1243, 97714316678414, 20694735360044, 17681326963274, 32250436182104, 11565945417734, 4743992577764, 39744496994, 1125993765824, 471730748654, 222270966284, 48394973114, 26932181744, 5914234274, 2983651634, 315941962199055, 131138206433325, 16516253859915, 20840398018665, 4850895237255, 2345112276645, 3997252800195, 67366183965, 51625071675, 17207130585, 19644232695, 6548279445, 3274138515, 1425, 146934136442896, 127796330465326, 66518231823436, 14646926770666, 10741832029576, 786701067286, 3982499473156, 281117304286, 3501876556, 1395706, 583646416, 7860148966, 1955343496, 301519512944657, 26061974415407, 84874254935117, 18452725305227, 13309033639817, 4069814544167, 778709868677, 1766447948387, 798080040257, 225340432127, 96956358797, 37556738987, 3335525297, 7408535807, 2070170897, 42587, 689033477, 1607, 241615580989458, 158583823626288, 68506788925518, 23126506980588, 3127976870538, 8557657516968, 5599509419718, 261134565348, 933251570178, 237857498208, 63054923358, 39642916668, 10509154218, 6607153128, 1751526078, 48653478, 240082486617619, 26197978521649, 35985436876879, 36151008307309, 23969128089739, 11984899968169, 215074828999, 1962743270629, 886767264259, 216367200289, 87223392319, 14849827549, 17282549179, 6920251609, 2422742839, 766735669, 162040129, 63414559, 1789, 95232720522260, 126945108541490, 53077209292880, 24542344068590, 13270007762060, 6634651161770, 155901957320, 12531335330, 4325711360, 1443536990, 29128740860, 9709580570, 120295160, 1607694950, 15650, 308339593816341, 74075572707891, 33601309885521, 24435502027311, 25676565995661, 13805828974251, 1202413766601, 2029740530631, 503368406901, 32040360291, 119161057281, 60855537951, 15570118461, 1607079291, 3310172361, 1684346871, 212339691, 125494941, 1971, 185902242048022, 121654757675572, 77139763119442, 10313305888432, 18738455811982, 3079060333372, 2510644973962, 1315406273992, 475557180022, 260245898212, 6889225282, 64430042032, 16826914462, 5611058332, 191665882, 882019192, 66772, 457208495308823, 116688432660533, 56886578380883, 7567426529393, 14511882413, 1512460615913, 1177881108743, 197522841893, 126038384963, 5486746013, 3501066683, 152410133, 97252403, 9293, 377981531136024, 194473469376054, 54507072528084, 32109530328114, 5116211640144, 10625340294174, 2703781350204, 1437413796234, 416124864264, 325997784294, 6835104324, 45444996354, 1139184384, 6129432414, 5724270444, 318024534, 412725732756505, 14646019415095, 13143109075285, 51379067975155, 28771658697745, 5607323111695, 2701447463725, 2772258316075, 1411851617545, 445216487335, 114306267205, 58218713635, 18688138945, 10574479135, 3175511485, 1005826075, 92570935, 83229685, 54953155, 9159415, 252333763591706, 34705166377016, 95451905433686, 27743949342836, 3996209571986, 1989034859696, 8060897088206, 664372109036, 203166351626, 397363553576, 55143893126, 10747443296, 1531600286, 79898876, 298550336, 42545006, 57591596, 9594296, 379610709166107, 105104934789177, 71116653888087, 54313287678837, 19911330351507, 9972595705137, 2676691483407, 2320503655917, 615377710347, 325847370537, 15291037767, 55755786597, 40427735427, 2930982177, 424751487, 2245985757, 14717337, 26379957, 10221777, 403767557913628, 254564937008698, 31190579746648, 52699593755638, 6951756130708, 14806717481698, 6148039579408, 598650856078, 1352898156508, 330098017258, 156003667528, 61497258838, 26141551588, 6892154338, 4333435648, 1452308878, 10221298, 114819688, 23949958, 1274338, 380055102105629, 79589835878459, 20873782944089, 18976544697719, 8823116419349, 11144114913779, 6875293543409, 2981068790639, 485550385469, 77850201899, 4115059529, 4772973959, 10729713989, 10588968419, 7039613249, 611323679, 251240939, 3175769, 41126999, 9229259]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.25, G.26, G.27, G.28, G.29, G.30]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r", "s"]);
gap:G := PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.25; o := G.26; p := G.27; q := G.28; r := G.29; s := G.30;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1566362440615402057288250328790172757041212750264243693294234060238953287458015018246828442745883566477194471683643428520870556485033043661416634358793883504273829290741690421149543337494309583174309159534249967337633112832847632079754862434430332147456747280021639209749643309836975027687467899108920340380125810438664136929118424440983716735713056827759902897346203883873660093311075848061271793277458603267380545193352805775813442090158024277540876327691820333031956388118444213971302161324426090390286175317191490422171702388655780400604458231622986496181362498808637959939460002885273873861651412777142101715292859679225191955047118532062679393716799186968654138725256189214953715930341586159999841757888736329304524299791422198859814281345158329744884885346065944331014998912878162885983239999106472750716887492867966442469858447867798956857187172616385331717865610382666831220675717422432630287509193888507136190721713253147933210197150704925726972634363126414712386453147357533071861026588678468070684431538390705223666016138389218410567340715018283507093300003590806398520492560247567666394656226303862468486158872219453911844536534569044914581580881405929296283583139517440258245428916863284081709261874012212159017512018045604917356863613256126272717143014808774391611194213333756647167354764191416157491485881247834642489445856102144552096626918093821948147969276001462853023773931520390723117365383948597773086107810846406008421452032314966128206178742299498813356169433347838751919383576456903631232699108468361105800777791312421530932294918958665966397575617149267344118275577502987697218017667256873147943471436087580735791777976507590910941928135761106679291224643323735182538622693801947233267477804208002662223646317050858683122989912029865729745233371640219459848159919630542993435345965464542355974441504772287107099125677993368918933926412790218597651662099639901382224155422369988934348659293233682018252524193395718374440223138978257046266579064724039571208258666773781878821699180798437320471573306134673003657349446547360587464847194756744752744573385820403064478948196935733759853355691681958034302386627212317710778128624513356368154084805252410304898861983518979970138862285816936932149974784031928055420539330465572593026413128892900826639448071763699088763999432353817022718342661903529020981101752437657733166940627674721349241878495212900650216593680772210453484351155006360273821623413989280256190308798328511240737616908820469331604930149618842124775956911314620500687989015287829147621048072731152992882362766382874134249899230052444219249770476717587252905928119211034653754458861487877184440102123830778018818179836536047469812557324503313088730579331049739326550491801775090174943744407819294389527821087378003379321592343838766597711847314969667607531217086741584853751595482351430952344942596814453712984023244015124525654771634614787089703628932895848008791878889020684153446974035750175380428800526999786810019614184070444975471609184468108375443448803556931037868966151656058116995279899129984422354720196143639837354401902941880975772181666093709520576967731982665749576563238860675041329948687490114133148461559588374935722198061393364947631508616750724128806004719828030977849447254598375714920799606334220416093605740705332138807554762695561973320154081676230263771353160807025701655095735202777897938954222630640365333617995768671259939383178587720238101580022598750357910455075001580984509585107674979631027134553767227126859396845500512236378540849669987252421203108513130015631645820555077466421211313667427401969227925582983699213020241885632377402377072230740144033590991916418416924418568530862356382741669735884161434830086316662548241297799254086857130145705660909966992098600926875026963025887587563142255330243625131994069172205081226385451624259724165545453957554055927132193751998289950703281090097342453024589901645152234310847645255047534712317027547356814668113561803562430205286867307479246321363263238209189277839216885157102482552417487933415832226520181047196494695776448187036365055142615057798967685341164092872925895185866806213294427616829153244215865791524098578938957593246220224267974388196557354275152141936050580640450726386429148825480111065433831138861285096805219148958648610157442012701061373487261861262838644248441982827582440540844752313821589627087995927273135452219226024581504937451862574652490473964919456018227495669964143412570900245915279532897330958482839370178032249616163079360876462596216557137547952511884650447809279,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
|
| Permutation group: | Degree $36$
$\langle(1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32), (1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34), (1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8), (1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22) >;
gap:G := Group( (1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32), (1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34), (1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8), (1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22) );
sage:G = PermutationGroup(['(1,7,15,19)(2,9,13,21,3,8,14,20)(4,12)(5,11,6,10)(16,22,30,35,18,24,28,36,17,23,29,34)(25,31)(26,33)(27,32)', '(1,21,15,31,3,20,13,33)(2,19,14,32)(4,11,30,23)(5,12,28,24)(6,10,29,22)(7,27)(8,26)(9,25)(16,36,17,35)(18,34)', '(1,36,26,12,14,22,2,35,27,11,15,24,3,34,25,10,13,23)(4,31,28,19,17,7)(5,33,30,21,18,9)(6,32,29,20,16,8)', '(1,4,14,30,27,17)(2,6,13,29,25,16,3,5,15,28,26,18)(7,34,19,10,32,24,9,35,21,11,33,23)(8,36,20,12,31,22)'])
|
| Transitive group: |
36T118935 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.C_2^3)$ |
$(C_3^{12}.C_2^8.C_3^4.C_4:D_4)$ . $C_2$ (2) |
$(C_3^{12}.C_2^8.C_3^4.C_4^2)$ . $C_2^2$ (2) |
$(C_3^{12}.C_2^8.C_3^2.D_6\wr C_2)$ . $C_2$ (2) |
all 30 |
Elements of the group are displayed as permutations of degree 36.
The $4672 \times 4672$ character table is not available for this group.
The $4498 \times 4498$ rational character table is not available for this group.