Properties

Label 1680.877.20.b1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{14}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $abc^{141}, c^{280}, c^{60}, c^{210}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{140}:C_6$
Order: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{35}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_{28}:C_6$
Normal closure:$C_3\times D_{70}$
Core:$C_{42}$
Minimal over-subgroups:$C_3\times D_{70}$$C_{12}\times D_7$$C_3\times D_{28}$
Maximal under-subgroups:$C_{42}$$C_3\times D_7$$D_{14}$$C_2\times C_6$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-2$
Projective image$C_2\times D_{70}$