Properties

Label 1680.877.140.b1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $abc^{141}, c^{210}, c^{280}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{140}:C_6$
Order: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{35}\times A_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$D_4:C_6$
Normal closure:$C_3\times D_{70}$
Core:$C_6$
Minimal over-subgroups:$C_3\times D_{14}$$C_3\times D_{10}$$C_2\times C_{12}$$C_3\times D_4$
Maximal under-subgroups:$C_6$$C_6$$C_2^2$

Other information

Number of subgroups in this autjugacy class$105$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$2$
Projective image$C_2\times D_{70}$