Subgroup ($H$) information
Description: | $C_{12}:D_{14}$ |
Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Index: | \(5\) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$a, d^{15}, c, b^{2}, b, d^{70}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $D_{105}:D_4$ |
Order: | \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^3\times F_5\times S_3\times F_7$ |
$\operatorname{Aut}(H)$ | $C_{42}.(C_2^4\times C_6)$ |
$\card{\operatorname{res}(S)}$ | \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $S_3\times D_{14}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $5$ |
Möbius function | $-1$ |
Projective image | $D_{15}:D_{14}$ |