Subgroup ($H$) information
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
| Exponent: | \(2\) |
| Generators: |
$ab, b^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $D_{105}:D_4$ |
| Order: | \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3\times F_5\times S_3\times F_7$ |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_2\times D_{14}$ | |||||
| Normalizer: | $D_4\times D_7$ | |||||
| Normal closure: | $D_{30}$ | |||||
| Core: | $C_2$ | |||||
| Minimal over-subgroups: | $C_2\times C_{14}$ | $D_{10}$ | $D_6$ | $D_4$ | $C_2^3$ | $D_4$ |
| Maximal under-subgroups: | $C_2$ | $C_2$ |
Other information
| Number of subgroups in this conjugacy class | $15$ |
| Möbius function | $-14$ |
| Projective image | $D_{15}:D_{14}$ |