Properties

Label 1680.517.28.b1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{30}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ab, d^{70}, d^{63}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{105}:D_4$
Order: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$D_{14}$
Normalizer:$D_{105}:D_4$
Complements:$D_{14}$ $D_{14}$
Minimal over-subgroups:$C_7\times D_{30}$$C_5:D_{12}$$C_2\times D_{30}$$C_3:D_{20}$
Maximal under-subgroups:$C_{30}$$D_{15}$$D_{10}$$D_6$

Other information

Möbius function$-14$
Projective image$D_{15}:D_{14}$