Properties

Label 165888.eb.1.a1
Order $ 2^{11} \cdot 3^{4} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times A_4^3:S_4$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Index: $1$
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(2,11)(5,6), (1,9)(2,5)(3,12)(6,11), (8,10)(9,12), (5,11,6)(7,10,8)(13,16,14,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is the radical (hence characteristic, normal, and solvable), nonabelian, and a Hall subgroup. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_4\times A_4^3:S_4$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times S_4^3).D_6$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $(C_2\times S_4^3).D_6$, of order \(331776\)\(\medspace = 2^{12} \cdot 3^{4} \)
$W$$A_4^3:S_4$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times A_4^3:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^3:S_4$