Properties

Label 165888.bz.6.K
Order $ 2^{10} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:A_4^2.C_{12}$
Order: \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,6)(2,3)(4,5)(7,8), (9,19)(10,18)(11,15)(13,14), (2,3)(7,8), (1,2,4,7,6,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_3\wr C_2^2$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.A_4^2.C_2^6.C_2$
$\operatorname{Aut}(H)$ $A_4\wr C_4.C_2^3$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2.A_4^2\wr C_2$
Normal closure:$C_2.A_4^2\wr C_2$
Core:$C_2^5.\PSOPlus(4,3)$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$A_4^2.\POPlus(4,3)$