Properties

Label 165888.bz
Order \( 2^{11} \cdot 3^{4} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $20$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16), (1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16) >;
 
Copy content gap:G := Group( (1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16), (1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16)', '(1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2894203520860917718596090696744526972858780089511953577566574795536694180460640242496035615198578470212882191369629057959791496852105424253390435653910720026080855247295277083172804488972641339832733847622865715400329521303089930410615836414391325201345383977596027850273326256564718402840997138404483465951001353840185220420902646939942052757261732406553475941689358626284694397098361889188844864,165888)'); a = G.1; b = G.4; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 

Group information

Description:$C_2^9.C_3\wr C_2^2$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$A_4^2.A_4^2.C_2^6.C_2$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 1663 6560 12672 43616 101376 165888
Conjugacy classes   1 25 26 30 144 70 296
Divisions 1 25 16 22 88 30 182
Autjugacy classes 1 20 11 10 59 13 114

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 6 8 9 12 18 24 36 54 72 81 108 162
Irr. complex chars.   24 36 30 48 0 32 42 44 0 14 16 0 8 2 0 296
Irr. rational chars. 4 14 18 8 14 8 30 24 16 22 8 4 4 6 2 182

Minimal presentations

Permutation degree:$20$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 18 18
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{12}=c^{6}=d^{6}=e^{2}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 30, 76, 9127443, 2192778, 1803813, 168, 9545404, 1369819, 1045384, 202564, 13685765, 4270340, 89135, 30290, 14915, 260, 4445286, 5042541, 2453256, 841731, 408936, 941767, 2527222, 4723957, 438532, 217147, 352, 12616568, 7756583, 1428878, 1769093, 646448, 17107209, 6998424, 3596439, 1166454, 199884, 97299, 2815570, 980125, 703930, 231715, 80260, 2838251, 1516346, 291641, 100496, 128051, 12130572, 6318027, 2148162, 716097, 315987, 31692, 60957, 14172, 544333, 11975068, 8164843, 1995898, 75718, 27853, 33874214, 10351829, 510344, 174209, 840449, 40589, 133754]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.4, G.6, G.8, G.10, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "c", "c2", "d", "d2", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(2894203520860917718596090696744526972858780089511953577566574795536694180460640242496035615198578470212882191369629057959791496852105424253390435653910720026080855247295277083172804488972641339832733847622865715400329521303089930410615836414391325201345383977596027850273326256564718402840997138404483465951001353840185220420902646939942052757261732406553475941689358626284694397098361889188844864,165888); a := G.1; b := G.4; c := G.6; d := G.8; e := G.10; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2894203520860917718596090696744526972858780089511953577566574795536694180460640242496035615198578470212882191369629057959791496852105424253390435653910720026080855247295277083172804488972641339832733847622865715400329521303089930410615836414391325201345383977596027850273326256564718402840997138404483465951001353840185220420902646939942052757261732406553475941689358626284694397098361889188844864,165888)'); a = G.1; b = G.4; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2894203520860917718596090696744526972858780089511953577566574795536694180460640242496035615198578470212882191369629057959791496852105424253390435653910720026080855247295277083172804488972641339832733847622865715400329521303089930410615836414391325201345383977596027850273326256564718402840997138404483465951001353840185220420902646939942052757261732406553475941689358626284694397098361889188844864,165888)'); a = G.1; b = G.4; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Permutation group:Degree $20$ $\langle(1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16), (1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16), (1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16) >;
 
Copy content gap:G := Group( (1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16), (1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,3,5,7)(6,8)(9,10,12,15,14,17,19,18,20,11,13,16)', '(1,3,6,2,5,8)(4,7)(9,11,14,18,20,17,19,15,13,10,12,16)'])
 
Transitive group: 36T23313 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(A_4^2.C_2^5)$ . $S_3^2$ $A_4^2$ . $(C_2^5.S_3^2)$ $C_2^5$ . $(A_4^2:S_3^2)$ $(C_2^9:C_3^2)$ . $S_3^2$ all 52

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2} \times C_{12} \simeq C_{2} \times C_{4} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 75 normal subgroups (37 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2.\POPlus(4,3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^3$ $G/G' \simeq$ $C_2\times C_{12}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2.\POPlus(4,3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3\wr C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^9.C_3\wr C_2^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3\wr C_2^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $C_2^9.C_3\wr C_2^2$ $\rhd$ $C_2^8.C_3^3$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^9.C_3\wr C_2^2$ $\rhd$ $A_4^2.A_4^2.C_2^2$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8.C_3^3$ $\rhd$ $C_2^4:A_4^2$ $\rhd$ $C_2^8.C_3$ $\rhd$ $C_2^8$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^9.C_3\wr C_2^2$ $\rhd$ $C_2^8.C_3^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $296 \times 296$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $182 \times 182$ rational character table (warning: may be slow to load).