Properties

Label 1632.1135.17.a1
Order $ 2^{5} \cdot 3 $
Index $ 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_2^4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(17\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{102}, d^{136}, b, c, d^{51}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{204}.C_2^3$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.C_{51}.C_8.C_2^4$
$\operatorname{Aut}(H)$ $C_2^6.(D_6\times S_4)$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^7.(C_2\times S_4)$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_6.C_2^4$
Normal closure:$C_{204}.C_2^3$
Core:$C_2^2\times C_{12}$
Minimal over-subgroups:$C_{204}.C_2^3$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_6\times Q_8$$C_2^2\times C_{12}$$C_2^2\times Q_8$

Other information

Number of subgroups in this autjugacy class$17$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_{34}$