Properties

Label 162000.be.45.b1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Index $ 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^2:S_3^2$
Order: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Index: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ac^{4}e^{2}, d^{20}f^{5}, d^{6}e^{3}f^{12}, d^{15}f^{3}, c^{2}, ef^{9}, b^{3}c^{4}f^{10}, c^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:D_5\wr S_3$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 45T1161.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_{12}\times S_3^2)$
$\operatorname{Aut}(H)$ $C_{15}^2.C_2^3.C_2^4$
$W$$D_5^2:S_3^2$, of order \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5^2:S_3^2$
Normal closure:$C_3^3:D_5\wr S_3$
Core:$C_1$
Minimal over-subgroups:$C_5^3.D_6:D_6$$C_{15}^2.D_6.C_2^2$
Maximal under-subgroups:$D_{15}^2:C_2$$C_{15}^2:D_4$$C_{15}:(S_3\times F_5)$$C_{15}^2:D_4$$C_{15}^2:D_4$$C_{15}^2:C_2^3$$C_{15}^2:D_4$$D_5^2:D_6$$D_5^2:D_6$$D_6:D_6$

Other information

Number of subgroups in this autjugacy class$135$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_3^3:D_5\wr S_3$