Properties

Label 162000.be.3.a1
Order $ 2^{4} \cdot 3^{3} \cdot 5^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_5^2.S_3^2$
Order: \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)
Index: \(3\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ef^{9}, d^{6}, b^{3}, c^{3}, f^{10}, d^{15}f^{3}, ad^{10}e^{2}, b^{2}c^{5}d^{3}e^{4}f^{8}, c^{2}f^{5}, f^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:D_5\wr S_3$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_{12}\times S_3^2)$
$\operatorname{Aut}(H)$ $D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$W$$C_{15}:D_5^2.S_3^2$, of order \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}:D_5^2.S_3^2$
Normal closure:$C_3^3:D_5\wr S_3$
Core:$(C_5\times C_{15}^2):S_4$
Minimal over-subgroups:$C_3^3:D_5\wr S_3$
Maximal under-subgroups:$(C_5\times C_{15}^2):S_4$$(C_5\times C_{15}^2):S_4$$C_5^3:(C_6^2:C_6)$$C_5^3.D_6:D_6$$C_5^3:(S_3\times S_4)$$(C_5\times C_{15}^2):D_6$$C_6^2:D_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:D_5\wr S_3$