Properties

Label 162000.be.250.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(250\)\(\medspace = 2 \cdot 5^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ac^{4}e^{2}, c^{3}, c^{2}f^{5}, b^{2}c^{5}d^{3}e^{4}f^{13}, d^{15}f^{3}, c^{4}d^{20}, f^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:D_5\wr S_3$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_{12}\times S_3^2)$
$\operatorname{Aut}(H)$ $C_3^3:(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2.S_3^2$
Normal closure:$C_3^3:(C_5^3:S_4)$
Core:$C_3^3$
Minimal over-subgroups:$C_3^3:(C_5^3:S_4)$$C_6^2.S_3^2$
Maximal under-subgroups:$C_3^3:A_4$$C_6^2:C_6$$C_3^2:S_4$$C_3^2.S_4$$C_3^3:S_3$

Other information

Number of subgroups in this autjugacy class$125$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:D_5\wr S_3$