Properties

Label 162000.be.2.a1
Order $ 2^{3} \cdot 3^{4} \cdot 5^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:(C_5^3:S_4)$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Index: \(2\)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $ef^{9}, d^{6}e^{4}f^{6}, b^{2}c^{5}d^{3}e^{4}f^{13}, c^{3}, f^{10}, d^{15}f^{3}, ac^{4}e^{2}, c^{4}d^{20}, c^{2}f^{5}, f^{3}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^3:D_5\wr S_3$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_6^2.(C_{12}\times S_3^2)$
$\operatorname{Aut}(H)$ $C_5^3.C_6^2.(C_{12}\times S_3^2)$
$W$$C_3^3:D_5\wr S_3$, of order \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3:D_5\wr S_3$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_3^3:D_5\wr S_3$
Maximal under-subgroups:$C_3^3:(C_5^3:A_4)$$C_5^3.(C_3\times C_6^2:C_2)$$(C_5\times C_{15}^2):S_4$$(C_5\times C_{15}^2).S_4$$C_{15}\wr C_3:C_2$$C_3^3:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^3:D_5\wr S_3$