Subgroup ($H$) information
Description: | not computed |
Order: | \(403368\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{5} \) |
Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Exponent: | not computed |
Generators: |
$\langle(8,10,14,12,9,13,11), (15,17,21,19,16,20,18)(22,27,26,24,25,23,28)(29,32,34,30,33,35,31) \!\cdots\! \rangle$
|
Derived length: | not computed |
The subgroup is nonabelian, solvable, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $C_7^5:(C_2^4:A_5)$ |
Order: | \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $0$ |
The ambient group is nonabelian and perfect (hence nonsolvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \) |
$\operatorname{Aut}(H)$ | not computed |
$W$ | $C_7^4:(C_2\times A_4)$, of order \(57624\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{4} \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_7\times C_7^4.A_4.C_2$ |
Normal closure: | $C_7^5:(C_2^4:A_5)$ |
Core: | $C_7^5$ |
Other information
Number of subgroups in this autjugacy class | $40$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_7^5:(C_2^4:A_5)$ |