Properties

Label 16134720.d.35.a1
Order $ 2^{6} \cdot 3 \cdot 7^{4} $
Index $ 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7\wr A_4$
Order: \(460992\)\(\medspace = 2^{6} \cdot 3 \cdot 7^{4} \)
Index: \(35\)\(\medspace = 5 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(29,30,31,34,35,32,33), (16,19)(17,18)(20,21)(23,26)(24,25)(27,28), (1,15,5,20,4,19,7,17,6,18,3,16,2,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_7^5:(C_2^4:A_5)$
Order: \(16134720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7^{5} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and perfect (hence nonsolvable).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 35T164.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5:(C_2\wr S_5\times C_3)$, of order \(193616640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{5} \)
$\operatorname{Aut}(H)$ $C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$W$$D_7\wr A_4$, of order \(460992\)\(\medspace = 2^{6} \cdot 3 \cdot 7^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$D_7\wr A_4$
Normal closure:$C_7^5:(C_2^4:A_5)$
Core:$C_1$

Other information

Number of subgroups in this autjugacy class$35$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5:(C_2^4:A_5)$