Properties

Label 16128.bb.4.a1.a1
Order $ 2^{6} \cdot 3^{2} \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,7):C_{12}$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 5 & 2 & 3 & 5 \\ 4 & 1 & 4 & 3 \\ 6 & 0 & 6 & 5 \\ 5 & 6 & 3 & 2 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 5 & 4 & 6 & 3 \\ 1 & 4 & 1 & 6 \\ 5 & 0 & 0 & 3 \\ 3 & 5 & 6 & 6 \end{array}\right), \left(\begin{array}{rrrr} 5 & 2 & 4 & 5 \\ 3 & 3 & 2 & 6 \\ 0 & 2 & 4 & 0 \\ 6 & 4 & 1 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 1 & 1 & 4 \\ 5 & 1 & 6 & 1 \\ 0 & 0 & 5 & 2 \\ 4 & 4 & 0 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_3\times \SL(2,7).D_8$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^4.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_2^3\times \PGL(2,7)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$W$$C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{48}$
Normalizer:$C_3\times \SL(2,7).D_8$
Minimal over-subgroups:$C_3\times D_8.\PSL(2,7)$$(C_3\times \SL(2,7)):D_4$$C_{48}.\PSL(2,7)$
Maximal under-subgroups:$\SL(2,7):C_6$$\SL(2,7):C_4$$\GL(2,3):C_{12}$$\GL(2,3):C_{12}$$C_{21}:C_{24}$

Other information

Möbius function not computed
Projective image$D_8\times \GL(3,2)$