Subgroup ($H$) information
Description: | $C_{23}\times D_{35}$ |
Order: | \(1610\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 23 \) |
Index: | $1$ |
Exponent: | \(1610\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 23 \) |
Generators: |
$a, b^{35}, b^{460}, b^{161}$
|
Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, a Z-group (hence supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{23}\times D_{35}$ |
Order: | \(1610\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 23 \) |
Exponent: | \(1610\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 23 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{22}\times F_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_{22}\times F_5\times F_7$ |
$W$ | $D_{35}$, of order \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Related subgroups
Centralizer: | $C_{23}$ | |||
Normalizer: | $C_{23}\times D_{35}$ | |||
Complements: | $C_1$ | |||
Maximal under-subgroups: | $C_{805}$ | $D_7\times C_{23}$ | $D_5\times C_{23}$ | $D_{35}$ |
Other information
Möbius function | $1$ |
Projective image | $D_{35}$ |