Properties

Label 1600.9861.20.j1.b1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times F_5$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a, c, b^{2}, b, d^{2}e^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{10}^2.C_2^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(12800\)\(\medspace = 2^{9} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4\times F_5$
Normal closure:$D_{10}:F_5$
Core:$C_2$
Minimal over-subgroups:$D_{10}:F_5$$D_4\times F_5$
Maximal under-subgroups:$C_2\times D_{10}$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2\times F_5$$C_2^2\times C_4$
Autjugate subgroups:1600.9861.20.j1.a1

Other information

Number of subgroups in this conjugacy class$10$
Möbius function not computed
Projective image$D_5^2.C_2^3$