Properties

Label 1600.9136.20.l1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{5}d^{5}, d^{10}, c^{10}, bc^{5}d^{5}, d^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times C_2^6.C_2\times F_5$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4\times F_5$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_{20}$
Normalizer:$C_{10}^2.C_2^4$
Minimal over-subgroups:$C_{20}\times D_{10}$$C_{20}:C_2^3$$D_{10}:Q_8$$D_{10}:Q_8$
Maximal under-subgroups:$C_2\times D_{10}$$C_2\times C_{20}$$C_{10}:C_4$$C_4\times D_5$$C_4\times D_5$$C_2^2\times C_4$

Other information

Möbius function$-2$
Projective image$C_{10}^2:C_2^2$