Properties

Label 1600.5593.400.b1
Order $ 2^{2} $
Index $ 2^{4} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $C_{16}.C_{10}^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}\times C_{20}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $C_2^3.(C_4\times S_4).S_5$
Outer Automorphisms: $C_2^3.(C_4\times S_4).S_5$
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times A_4).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{16}.C_{10}^2$
Normalizer:$C_{16}.C_{10}^2$
Minimal over-subgroups:$C_{20}$$C_2\times C_4$$C_8$$C_8$
Maximal under-subgroups:$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2\times C_{10}\times C_{20}$