Properties

Label 1600.5593.200.d1
Order $ 2^{3} $
Index $ 2^{3} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a^{5}c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{16}.C_{10}^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}\times C_{20}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Outer Automorphisms: $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times A_4).C_2^4.S_5$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}\times C_{80}$
Normalizer:$C_{16}.C_{10}^2$
Minimal over-subgroups:$C_{40}$$C_2\times C_8$$\OD_{16}$
Maximal under-subgroups:$C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_2\times C_{10}\times C_{20}$